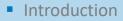


### MAPPER: High throughput Maskless Lithography

Marco Wieland


CEA- Leti Alterative Lithography workshop

- Introduction
- Applications
- Qualification of on-tool metrology by in-resist metrology
- Wrap up and conclusions









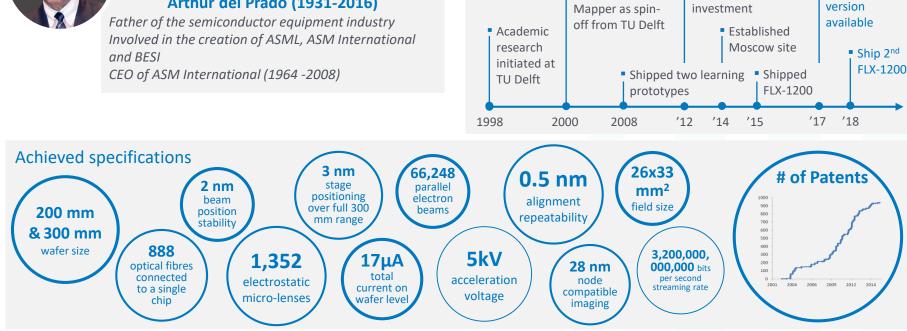
- Applications
- Qualification of on-tool metrology by in-resist metrology
- Wrap up and conclusions



## 17 years of lithography innovation @ Mapper



Demo




### The vision of one man, Arthur del Prado (1931-2016)

Key milestones

• € 80m

Foundation of



# Mapper makes e-beam direct write for volume manufacturing possible



### **Traditional e-beam**

1 electron beam per system





No full wafer placement accuracy

< 25 full 300 mm wafers per month

Throughput proportional to pattern density and resolution

Lab use only

### **Mapper FLX**

65,000 beamlets per unit

Compatible, optical, alignment

Matching to DUV and 193i

> 450 wafers per month (300 mm)

Throughput independent of pattern density and resolution

Down to 40nm logic node +

### **FLX extension**

> 1,000,000 beamlets per unit

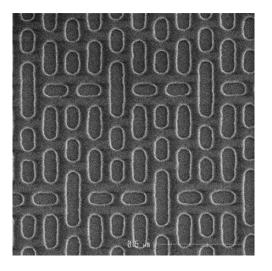
Evolution on the same platform

Unit clustering for >40 wph

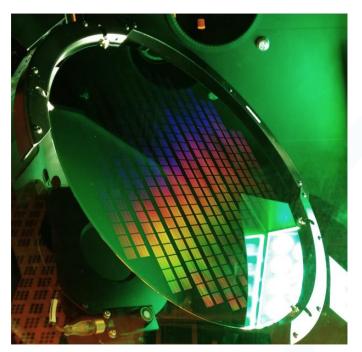


>5,000 wafers per month/unit

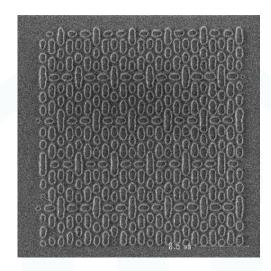
It takes minutes only to expose a wafer at <50nm


28nm logic node and below

+


#### **Ultra-advanced** Mapper roadmap logic / cutting Productivity Version: December 2017 and CDu 5.2Mbm **Capacity ramp-up Unique ICs Photonics** N40 logic 1.6Mbm **Spectral filters** Pilot R&D **Process** 65,000bm III-V 19 wpd Clustering development **Feasibility** FLX-1300 series FLX-1200 series **Pre-alpha** series **Demonstrator** 2005 - 2007 2008 - 2011 2012 - 2018 2019

### Status FLX-1200: full column operational at CEA-LETI as of August 2017


65k beams in 13x2 mm<sup>2</sup> slit. First exposures after upgrade to fully programmable blanker:



### 60 nm HP (N40)



Getting close to covering a full 300 mm wafer in 60 minutes



40 nm HP (sub N28)

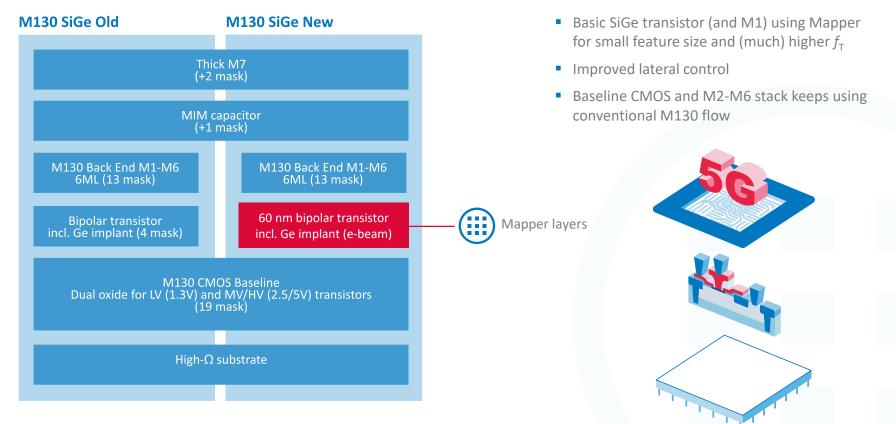


- Applications
- Qualification of on-tool metrology by in-resist metrology
- Wrap up and conclusions



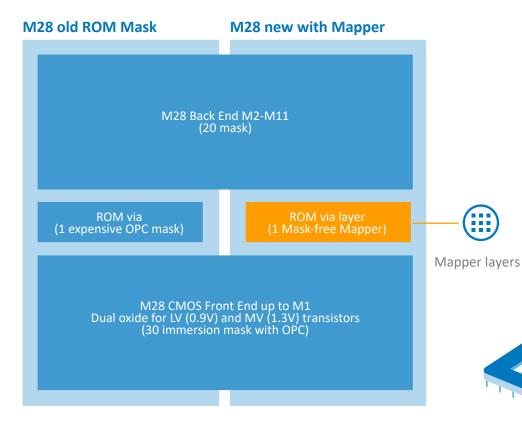


# Many different end markets targeted by Mapper



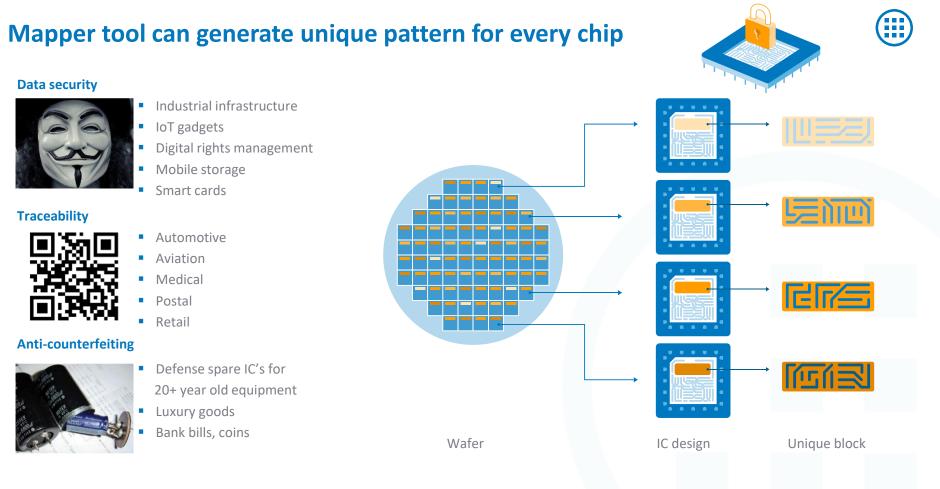

| Mapper applications                           |                                |                                              | Тооі                                                                                                                              | Description                                                                                                                                                                                                |
|-----------------------------------------------|--------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R&D, prototyping and<br>technology evaluation |                                | FLX-1300                                     | <ul> <li>Use in research labs/fabs for scientific experiments, prototyping<br/>and ultra-small-scale series production</li> </ul> |                                                                                                                                                                                                            |
|                                               | Fab<br>Capability<br>expansion | Defense and<br>high-security<br>applications | FLX-1300                                                                                                                          | <ul> <li>Use of maskless litho for small-series production (e.g., chip<br/>emulation) and to avoid external treatment of design data in<br/>mask shops</li> </ul>                                          |
|                                               |                                | III-V photonics<br>devices & circuits        | FLX-1300                                                                                                                          | <ul> <li>Use for producing III-V photonics circuits and passive devices,<br/>avoiding mask cost and enabling new device design features that<br/>cannot be produced with mask-based lithography</li> </ul> |
| potential                                     |                                | Specialty silicon<br>circuitry               | FLX extension                                                                                                                     | <ul> <li>Use for small-series products for specialty applications in silicon,<br/>as a low-cost replacement of a mask-based system</li> </ul>                                                              |
| —(II) Integrated CMOS                         |                                | CMOS sensor optics                           | FLX-1300                                                                                                                          | <ul> <li>Use for novel optical filters/elements that are directly integrated<br/>on top of a silicon CMOS sensor that cannot be produced using<br/>mask-based optical lithography</li> </ul>               |
| Tru                                           | Truly<br>unique ICs            | RFID                                         | FLX-1300                                                                                                                          | <ul> <li>Use for 1 layer per chip creating unique, hard-wired ID for RFID<br/>tag to be used as trusted root of trust for security applications</li> </ul>                                                 |
| uni ∟(♥ uni                                   |                                | Scale-up across<br>applications              | FLX extension                                                                                                                     | <ul> <li>Embedding of unique, hard-wired IDs into security chips across<br/>different applications and uses (e.g., smart cards, IoT,)</li> </ul>                                                           |

CEA- Leti Alterative Lithography workshop


# Technology migration with Mapper: <90nm SiGe technology on 8"



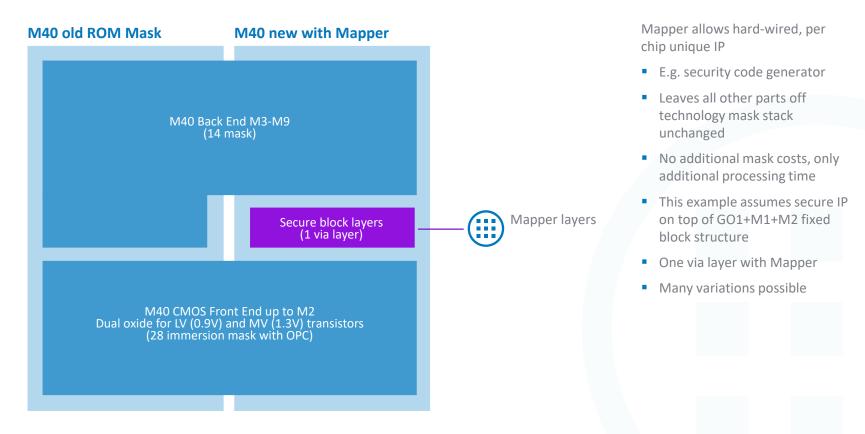



# Technology migration with Mapper: ROM and structured ASIC





Mapper layer replaces very expensive ROM-via programming layer in nodes where Flash is not available


- Classical optical mask very expensive due to closely spaced repetitive via pattern
- Mapper has no problem with these patterns and could even allow smaller ROM dimensions
- Mapper layer has a much faster turn-around time due to 100% software; one day cycles possible
- Eliminate need to add external memory → simpler and lower cost devices



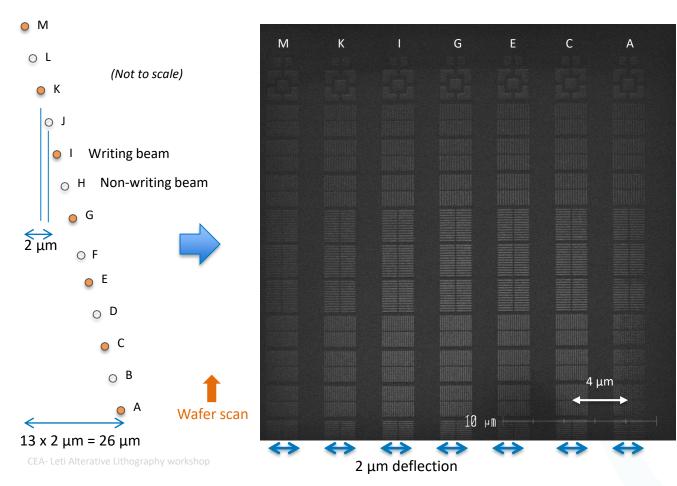
#### CEA- Leti Alterative Lithography workshop

# **Technology migration with Mapper: Every chip unique**





Introduction


- Applications
- Qualification of on-tool metrology by in-resist metrology
- Wrap up and conclusions





# Redundancy: exposing with 50% of beams at the same time





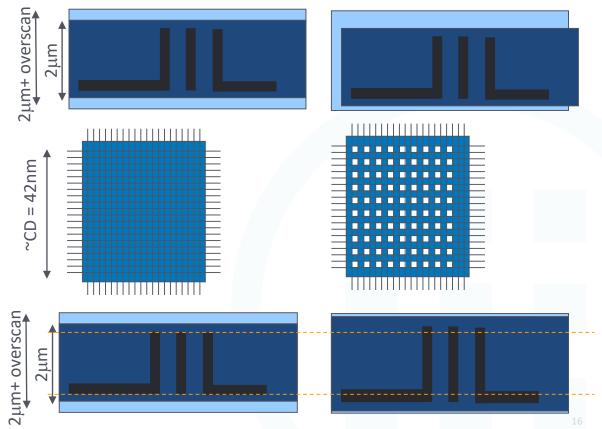
- We can't assume all beams are always working or fully within specification
- Therefore before every full scan of the wafer all beams are measured
- Then the 'good' beams are used to expose the wafer
- Therefore we need an additional 'redundancy scan' to complete the whole wafer

### Beam properties corrected in datapath based on on-tool metrology Before After

### <u>Shift</u>

-beam position

-field size + shape (for overlay)


-field position

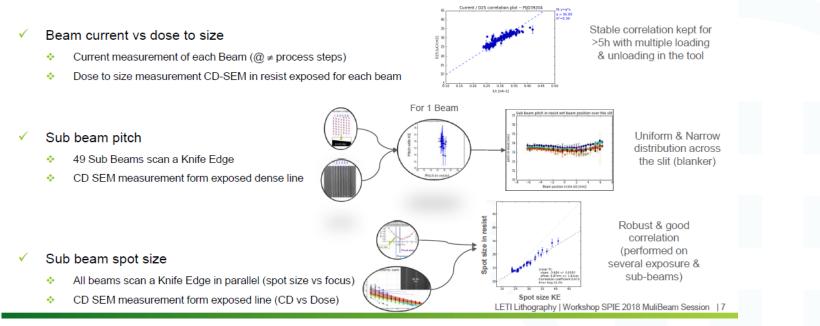
### Beam to beam dose

-beam to beam current-part of btb deflector strength

### <u>Scale</u>

- beam to beam deflector strength






### **Results of on tool metrology qualification in Leti presentation**



### THE MAIN ACHIEVEMENTS (ABOUT THE INTERNAL METROLOGY)

Goal = to correlate the in tool measurements (tool parameters) with the in resist (after exposure) measurements:



Introduction

- Applications
- Qualification of on-tool metrology by in-resist metrology

• Wrap up and conclusions





### Wrap up and conclusions

Roadmap:

- FLX-1300: step in manufacturability, availability, overhead reduction
- FLX-1300: will support various wafer sizes and substrates
- Path to 1.6M and 5.2M beams to improve productivity and CDu

Application highlights:

- Fab capability expansion
- Truly unique IC's

Qualification of on-tool metrology by in-resist metrology

- Beam selection
- Tool calibrations

### Put your design on the demo shuttle

- FLX-1200 can print fields of 5mm x 5mm
- If you want your design printed, contact:

Bert Jan Kampherbeek

Mapper Lithography

Bert.Jan.Kampherbeek@mapper.nl

Laurent Pain CEA-Leti Laurent.Pain@cea.fr

# Thank you for your attention